

DocMASE Project Proposal 2011-11

Project Title	Selectivity Enhancement of Gas Sensitive Field Effect Transistors by Dynamic
	Operation
Main University and Advisor	Saarland University (Saarbrücken, GERMANY)
	Prof. Dr. Adreas SCHÜTZE
Second Univ. and Advisor	Linköping University (Linköping, SWEDEN)
	Prof. Dr. Anita LLOYD SPETZ
Associated Partner(s)	Oulu University (Oulu, FINLAND)
	Prof. Dr. Jyrki Lappalainen
Project Description	Gas sensitive field effect transistors based on silicon carbide, SiC-FETs, have been
	applied to various applications mainly in the area of exhaust and combustion
	monitoring. So far, these sensors have normally been operated at constant
	temperatures and adaptations to specific applications have been done by material and
	transducer platform optimization.
	In this thesis, the methodology of dynamic operation for selectivity enhancement is
	systematically developed for SiC-FEIs. Temperature cycling, which is well known for
	metal oxide gas sensors, is transferred to SIC-FEIs. Additionally, gate blas
	The multi-dimensional sensor data are evaluated by use of pattern recognition mainly
	hased on multivariate statistics. Different strategies for feature selection cross-
	validation and classification methods are studied
	After developing the methodology of dynamic operation, i.e., applying the virtual
	multi-sensor approach on SiC-FETs, the concept is validated by two different case
	studies under laboratory conditions: Discrimination of typical exhaust gases and
	quantification of nitrogen oxides in a varying background is presented. Additionally,
	discrimination and quantification of volatile organic compounds in the low parts-per-
	billion range for indoor air quality applications is demonstrated. The selectivity of
	SiC-FETs is enhanced further by combining temperature and gate bias cycled
	operation. Stability is increased by extended training.