

	U I
Project Title	Spark plasma sintered nanocomposites based on zirconia doped with yttria
Main University	Universitat Politècnica de Catalunya (UPC) (Barcelona, SPAIN)
and Advisor	Dr. Marc ANGLADA
Second Univ.	Lulea University of Technology (LTU) (Lulea, SWEDEN)
and Advisor	Dr. Marta-Lena ANTTI
Associated	Nanoforce Technology (London, ENGLAND)
Partner(s)	Dr. Michael REECE
Project	Tetragonal zirconia polycrystals stabilised with 3% molar yttria (3Y-TZP) have been
Description	widely used in the past in femoral heads of hip-joint replacements and now in dental
	restorations because of their high mechanical strength and fracture toughness, wear
	resistance and excellent biocompatibility. However, when exposed to aqueous
	environments, tetragonal to monoclinic transformation may take place at the surface even
	at the human body corporal temperature. This phenomenon is referred to as hydrothermal
	ageing or low temperature degradation (LTD) and its presence has dramatic effects on
	the performance of implants subjected to contact loading. 3Y-1ZP is therefore no more
	composites However monolithic 3V-TZP is increasingly used in dental applications but
	it is now a subject under hot investigation weather LTD is also a serious limitation for
	the use of 3Y-TZP in dental implants [1].
	One method to reduce LTD in 3Y-TZP is to refine the grain size by increasing the energy
	barrier for t-m transformation in humid environments. The effectiveness of this approach
	in reducing the amount of t-m transformation has been clearly demonstrated by reducing
	the grain size from several micrometers to the scale of a few hundred nanometres, but
	LTD is still operative for the smallest grain size achieved by conventional sintering.
	Recently, Chintapalli et al have shown that the novel technique of Spark Plasma
	sintering (SPS) is able to produce dense materials with nanometric grain size which are resistant to LTD. However, a penalty is paid for this since the t m transformation
	activated by stress is also nearly absent so that fracture toughness decreases in
	nanometric 3Y-TZP fabricated by SPS.
	The PhD thesis work proposed here aims to study the change in the yttria content and the
	incorporation of other ions in solution in order to produce Y-TZP by SPS which is of
	nanometric grain size, resistance to LTD and with fracture toughness at least as high as
	that sintered by conventional methods. Several approaches will be studied, but most of
	the effort will be addressed to study the design on 3Y-TZP nanocomposites produced by
	SPS which are resistant to LTD and with higher mechanical properties than monolithic
	3Y-1ZP. Most of the work will be comised out at LIDC in Denseland, but it will involve a stage of at
	Most of the work will be carried out at OPC in Barcelona, but it will involve a stage of at least two
	stages of about 3 weeks each in London at Nanoforce for training in SPS and for
	preparing specimens by this technique. Also short stages are planned in other main
	partners of DocMASE, as well as in other associated partners.
References	[1] Chevalier J, Gremillard L, Deville S., "Low-Temperature Degradation of Zirconia
	and Implications for Biomedical Implants", Annu Rev Mater Res 37 (2007) 1–32.
Previous	1. J.A.Muñoz-Tabares, E. Jiménez-Piqué and M. Anglada, "Subsurface evaluation of
Publications	hydrothermal degradation of Zirconia", Acta Materialia 59 [2] (2011)473-484.
	2. Y. Gaillard, E. Jiménez-Piqué, F. Soldera, F. Mücklich and M. Anglada,
	"Quantification of hydrothermal degradation in zirconia by nanoindentation", Acta
	Materialia 30 [10] (2008) 4200 - 4210.
	of nanocrystalline spark plasma sintered 3Y-TZP". <i>Materials</i> 3 [2] (2010) 800-814

DocMASE Project Proposal 2011-07