

Project Proposal for 2011 DocMASE Candidates

Project Title	Micromechanical design of coatings for forming tool-like applications
Main University	Universitat Politècnica de Catalunya (UPC) (Barcelona, SPAIN)
and Advisor	Dr. Luis LLANES (luis.miguel.llanes@upc.edu)
Second Univ.	Linköping University (LiU) (Linköping, SWEDEN)
and Advisor	Dr. Naureen GHAFOOR
Associated	SECO Tools
Partner(s)	Dr. Mats JOHANSSON
Project Description	The quest for improving the performance of tools and parts demands key surface technologies for achieving of a superior tribomechanical resistance. From this viewpoint,
	although hard coatings are frequently used to enhance the lifetime of cutting tools, application of similar surface engineering approaches on forming tools and machine
	components are still relatively scarce [1]. Considering that these applications often imply complicated service conditions <i>it is the nurnose of this study to set out and implement</i>
	contact loading protocols, as a new testing methodology, for assessing the performance
	of the coated system from a toughness-fatigue-galling (forming tool-like) perspective.
	Although knowledge on the behavior of hard coated systems under repetitive contact loading is rather scarce, it is clear that repetitive impacts imply a mechanical degradation
	of the system (see Fig. 1.), which has been correlated to an evolution of surface damage
	in terms of substrate plastic deformation, followed by cracking of the coating and final
	interface failure. Hence, it is aimed to conduct systematic studies of the contact
	response and damage mechanisms induced by spherical indentation, under monotonic and cyclic loading on reference and advanced/innovative coated systems (e.g. low
	friction ultrahard nanocomposites and/or multilavered films) In doing so particular
	attention will be paid to the identification of critical damage phenomena, evaluation of the
	mechanical fatigue sensitivity of the coated system, and assessment of the tribochemical response as related to friction, wear and fretting
	fatigue. The detailed characterization will be conducted at both micro- and nanoscales
	through use of suitable techniques such as nanoindentation, microscratch, AFM, FIB,
	electron microscopy and spherical indentation by means of universal testing systems.
	Fig. 1. SEM image (cross-section) showing
	damage features induced on a multilayer
Defense	film under contact loading.
Provious	[1] S. Hogmark, S. Jacobson and M. Larsson, Wear 246 (2000) 20.
Publications	Findingering 2 (2010) 299
	2. G. Ramírez, E. Tarrés, B. Casas, I. Valls, R. Martínez and L. Llanes, <i>Plasma</i>
	Processes & Polymer, 6 (2009) \$588
	3. E. Tarrés, G. Ramírez, Y. Gaillard, E. Jiménez-Piqué and L. Llanes, Int. J. Ref. Metals
	& Hard Mater. 27 (2009) 323
	4. B. Casas, U. Wiklund, S. Hogmark and L. Llanes, Wear, 265 (2008) 490
1	5. B. Casas, M. Anglada, V.K. Sarin and L. Llanes, J. Mater. Sci., 41 (2006) 5213