E·U·S·M·A·T

Project Title	Copper based oxide films for transparent p-n junctions
Main University and Advisor	Institut National Polytechnique de Lorraine (Nancy, FRANCE) Dr. Jean-François PIERSON
Second Univ. and Advisor	Saarland University (Saarbrücken, GERMANY) Prof. Frank Mücklich
Associated Partner(s)	Pontificia Universidad Católica de Chile (Santiago, CHILE) Dr. Esteban Ramos
Project Description	ITO, SnO ₂ :F or ZnO:Al are well known as n-type conducting materials. On the other hand p-type transparent conducting oxides in thin film form were described for the first time in 1997 [1]. The deposition of p- and n-type layers on transparent substrates opens the way towards transparent microelectronics. Our group already has a strong experience on ZnO:Al film deposition [6-8]. Within the objective to synthesise transparent p-n junctions, it is necessary to develop a process for the deposition of p-type transparent conductors.
	The oxides that crystallise in the delafossite-like structure are the most promising p-type conductors. This structure is observed for materials with the following formula: ABO_2 where A = Cu, Ag, Pd, Pt and B = Fe, Cr, Al, Y, Sc, La, In, Nd. In the literature, the delafossite-like oxides are usually deposited by the non-reactive sputtering of an oxide target [2-4]. Although the co-sputtering process in reactive mode may allow a better composition of the deposited films, this method is scarcely used [5].
	This project aims to study the influence of the deposition conditions on the structure, the optical and the electrical properties of delafossite-like films deposited on glass and polymeric substrates by reactive sputtering. The metallic targets will be sputtered either using pulsed-DC or HIPIMS generators. During the third year, transparent p-n junctions will be elaborated.
	$\left(\begin{array}{c} I I I I I I I I$
	X-ray diffractogram and optical transmittance of a delafossite-like film.
References	 [1] H. Kawazoe et al., <i>Nature</i> 389 (1997) 939 [2] Min Fang et al., <i>Appl. Surf. Sci.</i> 257 (2011) 8330 [3] A. Barnabé et al., <i>Mater. Lett.</i> 60 (2006) 3468 [4] Guobo Dong et al., <i>Vacuum</i> 82 (2008) 1321 [5] Hong-Ying Chen et al., <i>Thin Solid Films</i> 519 (2011) 5966
Previous Publications	 [6] D. Horwat, A. Billard, <i>Thin Solid Films</i> 515 (2007) 5444 [7] D. Horwat et al., <i>J. Phys. D: Appl. Phys.</i> 43 (2010) 132003 [8] M. Jullien et al., <i>Solar Energy Mater. Solar Cells</i>, 95 (2011) 2341

DocMASE Project Proposal 2012-06